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Abstract. Localized buckling in structures has been extensively studied in the context of simple nonlinear models
which capture the essence of the phenomenon near the lowest critical load. In this study we apply a non-periodic
Rayleigh–Ritz procedure to track localizations into the far post-buckling regime where the structure regains sta-
bility after the initial destabilization. The results are compared against independent numerical solutions and good
agreement is found.
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1. Introduction

Loss of elastic stability has been studied with much interest over the past few decades, as it
has accounted for many failures of structures during construction and service. A fundamental
understanding of buckling phenomena underconservativeloading has been developed primar-
ily through the use of the concepts of total potential energy and Hamilton’s principle [1, pp.
16–19]. Buckling is a manifestation of a bifurcation phenomenon with a fundamental solution
losing stability and being replaced by some other pattern: the bifurcation can be either super-
or sub-critical, depending on the precise form of the nonlinearity.

Our concern will be with long one-dimensional structures which admit a zero or trivial
fundamental state. For such simple cases early analyses concentrated almost exclusively on a
deflection profile, where the buckling occurs in a distributed manner along the structure. This
is the case of a post-buckling response, which is lateral deflection of the structureperiodic in
the axial coordinate [2, pp. 26–45]. When buckling is characterized by a stable post-buckling
path, (i.e. the structural system experiences a super-critical bifurcation), then periodicity of
the deflected profile of the structure is a reasonable assumption. However, if the structural
system suffers a sub-critical bifurcation, the deflection tends not to be periodic but, rather,
is limited to a small region of the structure. We define this as localization of buckle patterns
and note that the solution dies off exponentially to zero either side of the large-deflection
region, [3]. Asymptotic [4] and numerical [5] techniques have been developed which can find
such solutions – at least in the case where the secondary path falls off monotonically from
the critical state. However, in practice a structure often restabilizes and so the assumption
of a simple nonlinearity which causes paths simply to fall and never to rise is inadequate for
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studying more realistic systems. Where nonlinearity arises out of the large-deflection (elastica)
geometry, some similar qualitative results are found [6].

Much progress has been made in the knowledge of localized buckling properties largely
through the consideration of simplified model structures [7]. For instance, it is remarkable that
the analysis of the one-dimensional model of a linear strut resting on a nonlinear foundation
has had such a bearing on our understanding of the behaviour of much more complicated
systems such as the axially-compressed cylindrical shell [8]. In the current study we wish to
explore techniques for analysing a more realistic assumption for the behaviour of the nonlin-
earity of the strut system and, in particular, our desire is to look at a problem in which the
foundation restabilizes after the initial instability. Work of a general nature on such a system
has been reported by Woods and Champneys [9] who found that the post-buckling of the strut
on a restabilizing foundation is characterized by a series of falling and rising paths as the
deflection goes from being thoroughly localized to periodic.

For structures which localize and then restabilize the deflection eventually becomes peri-
odic in the axial coordinate, but this does not occur until far into the post-buckling regime of
the system. Past experience suggests that a periodic Rayleigh–Ritz analysis suffices to find
the load at which the transition occurs between the localized and periodic states (for example
see the results in [10, pp. 174–185]. It has been reasoned that the transfer from localized
to periodic buckling occurs according to the classical Maxwell criterion for the change of a
system from one equilibrium state to another. This hypothesis has recently been given a firm
underpinning and the behaviour has been reported for other structural systems as well [11].

Our aim here is to investigate the accuracy of an approximation technique further into the
post-buckling regime than has previously been reported. Our results show that, starting with
an approximation to the primary localized solution, we can track post-buckling solutions and
we continue the analysis beyond the point where the path restabilizes and a second loss of
stability, through the occurrence of a fold catastrophe, is incipient. Woods and Champneys [9]
have tracked the solution using a numerical boundary-value problem solver and we validate
our modal results using the same software.

The work reported here begins with an introduction to the strut model to be studied starting
with the total potential-energy functional and the governing differential equation. An analysis
of the linearized form of this equation reveals the location of the critical point at which the
trivial solution is replaced by a buckled response. At criticality, the linear response suggests a
distributed form of solution is feasible, but under the right circumstances the chosen nonlin-
earities actually give rise to solutions which are localized to a small region of the structure.
Section 3 outlines a double-scale perturbation to find the form of solution emerging from
the critical point. The analysis predicts that localized solutions can not exist for all forms
of nonlinearity. Although such asymptotic solutions have been shown to be good near the
point of expansion, severe shortcomings have also been identified and some of these are
highlighted. Section 4 shows the way in which the above asymptotic solutions can be used
as a basis for performing a Rayleigh–Ritz type of analysis which again begins with the energy
functional from which approximate equilibrium equations are derived. The solutions of these
equations are compared with direct numerical integrations of the differential equation using
an established piece of freely-available software – the comparisons are very good for the range
of post-buckling under study. We finish by drawing some conclusions in Section 5.
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Figure 1. An elastic strut resting on an elastic foundation acted on by a compressive axial load.

2. Basic analysis

The structure to be studied is shown in Figure 1 in whichx denotes the axial coordinate andy
measures vertical deflection. An infinitely long strut, with a linear bending stiffnessEI , rests
on a nonlinear elastic foundation which provides a resistive vertical forceF per unit length
(see [2]). The structure is loaded by a compressive axial forceP which maintains its direction
and magnitude during any displacement: however this loading can be varied parametrically.

2.1. THE NONLINEARITIES

To ensure that the structural system undergoes a sub-critical bifurcation, when localized buck-
ling is usually favoured over its periodic counterpart, the nonlinearity which dominates in this
region must have a negative coefficient. Higher-order positive terms are then required to cause
the system to restabilize. In order to model these various features we choose to capture the
restabilization phenomenon at the lowest possible orders so that in addition to the linear term
in the foundation force a negative quadratic term and a positive cubic term are included. Thus
we take

F = ky − c1y
2 + c2y

3, (1)

where the foundation constantsk, c1 andc2 are all positive. Of course, this choice of nonlin-
earity is not unique, but does have the merit of exhibiting all the essential features required
while maintaining some simplicity.

In order to find valid equilibrium states (and then subsequently to assess their stability) we
must consider the total potential energy of our structural system. This has two major compo-
nents. First, there is strain energyU which is the energy stored in deforming the structure.
Second, there is the work done by the external load(s)P which for a conservative system can
be denoted byPE whereE is the distance moved by the load in its direction of action (for our
one-dimensional system we callE end-shortening). Taken together, these two components of
energy form the total potential energy of the system

V = U − PE (2)

which for the strut is

V =
∫ ∞
−∞
(1

2EI ÿ
2 − 1

2P ẏ
2 + 1

2ky
2 − 1

3c1y
3+ 1

4c2y
4)dx, (3)
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where a dot denotes diffentiation with respect tox[3]. The various parts of (3) admit physical
interpretations which can be motivated by considering a small element of the strut of length
dx. The first three terms in the integrand come from the standard truncation of the Taylor-
series expansions for the expressions for the bending energy stored in the element, the work
done by the loadP in moving from the undeflected to the deflected state of the element and
the amount of energy stored in the foundation due to the linear stiffnessk. The remaining two
terms arise from the nonlinear parts of the foundation response [2].

Equilibrium states are defined as those at whichV takes extreme values for arbitrary vari-
ations inV . The governing equation is found upon application of the calculus of variations to
the expression for the first variation ofV and is readily obtained as

EI
....
y +P ÿ + ky − c1y

2 + c2y
3 = 0. (4)

In order to highlight the roles of the linear and nonlinear terms the above equation can be
rescaled so that only the essential coefficients remain as free parameters. Henceforth, we will
examine a dimensionless form of (4) by settingEI = k = c1 = 1 [5] which yields the
simplified form

....
y +P ÿ + y − y2 + c2y

3 = 0. (5)

Now the constantc2 characterizes the degree of restabilization of the foundation.

2.2. LINEAR EIGENVALUE ANALYSIS

The loading on the structure is parametrized byP and we need to find the value at which the
flat fundamental (unbuckled) state loses stability. It suffices to examine a linearized form of
(5) and, for positiveP , three regions with distinct behaviours are identified (Figure 2). For the
rangeP > PC = 2, the eigenvalues of (5) take four distinct imaginary values symmetrically
spaced about the real axis. The deflection in this case is thus expected to be periodic inx.
As P is reduced the pairs either side of the real axis coalesce and, subsequently, the system
undergoes a Hamiltonian–Hopf bifurcation as the two pairs split symmetrically into the four
quadrants of the complex plane with the forms±α ± iω where

α =
√

1

2
− P

4
, ω =

√
1

2
+ P

4
. (6)

At the critical point the quadratic nonlinearity will dominate over the cubic term and
the initial path is found to fall fromPC [2]. Thus we expect the regionP < PC to be
of importance for our post-buckling study and here the linearized behaviour is a sinusoidal
wave bound by an exponentially growing or decaying envelope. Past experience [4] indicates
that the nonlinearity in the system is capable of forming a connection between growing and
decaying solutions leading to a strut profile which is localized inx. In dynamical systems
terminology, the system is Hamiltonian with an associated spatial analogue of potential energy
and kinetic energy and localized profiles are homoclinic to the flat state [5].
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Figure 2. Eigenvalues of the linearized form of (5) for (a)P > PC = 2, (b)P = PC and (c)P < PC .

3. Double-scale perturbation analysis results

In the vicinity ofPC a double-scale perturbation analysis reveals the behaviour of the emer-
gent primary solutions. To this end we define a perturbation parameterε which measures
evolution from the critical state such that

P = PC − ε2+ · · · . (7)

In previous analyses (see [3], for example), this expansion has been truncated after the second
term but we may wish to include the extra terms because the restabilization may impose an
effect onP such that other terms are involved. However, to the level shown below, no such
effect has been found. Also, because the behaviour atP = PC is expected to be sinusoidal a
solution in this vicinity can be assumed to evolve smoothly from there. The amplitude of the
solutions may vary on a shower scale than the period of the deflection atP = PC and so we
define a slow space scale such that

X = εx. (8)

By expressingy as

y =
∞∑
i=0

{Ai(X) cosi(ωx + φ0)+ Bi(X) sini(ωx + φ0)}, (9)

whereAi andBi are slowly varying amplitudes andφ0 is a phase angle, we may transform the
governing equation (5) into a partial differential equation [4]. The slow-space analysis, which
is the one we are concerned with here, completely decouples the fast variation from the slow
one [5] and, in particular, suggests that the phaseφ0 is arbitrary. However, a more advanced
analysis based upon the ideas of exponential asymptotics reveals that for primary localization
φ0 is not free, but rather is restricted to the discrete valuesφ0 = 0, π [12]. This reinforces
the importance of the symmetric section which means that all primary solutions to this system
must be even functions about their own centres [4].

If each amplitude is also expressed as a series inε

Ai(X) =
∞∑
j=1

εjA
(j)

i (X), Bi(X) =
∞∑
j=1

εjB
(j)

i (X) (10)

and progressively higher-order coefficients ofε are extracted, we derive a set of equations
which reveal the behaviour of the amplitudes in the formal expansions of eachAi andBi . The
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somewhat labour-intensive details of this procedure are relegated to Appendix A from which
it is seen that the first equation giving non-trivial information concerning the amplitude of the
fundamental modeA(1)1 is

4
d2A

(1)
1

dX2
− A(1)1 +

(
19

18
− 3

4
c2

)
A
(1)3
1 = 0. (11)

For bounded localized solutions the coefficient of the cubic term must be positive which yields
the condition

c2 <
38

27
, (12)

whereupon

A
(1)
1 = 6

(
19− 27

2
c2

)−1/2

sech

(
X

2

)
. (13)

For larger values ofc2 the asymptotic theory predicts that localized solutions cannot exist and
this result ties in precisely with the study of Woods and Champneys [9] who used a normal
forms type of analysis for the restabilizing strut problem. Apart from this condition onc2,
Equation (11) is only expected to be valid very close to the critical point atP = PC and gives
no idea as to how the system may evolve whenε is not small.

Like earlier attempts at approximating and tracking localized post-buckling solutions some
way into that regime with a regular double-scale approach [3, 4] there is no indication of other
types of behaviour that may be expected in post-buckling. Even if higher-order terms are
calculated, nothing new is revealed about the existence of subsidiary localized solutions or the
eventual effect of the restabilization. In addition to developing global proofs for the system
[13], two ways to proceed have been proposed. One is to track the primary solutions using
a Rayleigh–Ritz [5] technique. The other is to modify the relatively simple-minded double-
scale asymptotics to incorporate beyond-all-orders terms and so find subsidiary localizations
[14]. Here we shall pursue the former strategy as we are interested in the way that the stability
of the initial localized profile changes.

The ability of the foundation to restabilize after the initial instability is characterized by
the coefficient of the cubic termc2 in (5). Different values ofc2 can give qualitatively different
foundation responses as is demonstrated by Figure 3 which shows the form of the foundation
forceF = y − y2+ c2y

3 for three valuesc2 ∈ [0·24,0·4]. Now (12) predicts that for allc2 in
this interval localization may occur but the plots in Figure 3 cover a variety of quite different
responses. It may be argued that the casec2 = 0·24 is physically unrealistic because there is a
range of positive deflection,y, for which the foundation does not resist deflection(F > 0) but
in fact favours it(F < 0). On the other hand, this objective is equally valid of the quadratic
foundation (i.e.c2 = 0) studied by Huntet al. [3] and by many subsequent researchers. When
c2 = 0·30 Figure 3 proves that the foundation response is always resistive but the stiffness
(gradient) of the foundation force is negative for a range of deflections. In contrast, for the
last case shown(c2 = 0·40) the foundation merely loses some stiffness at some point but this
quantity is always positive.
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Figure 3. The variation of foundation forceF = y − y2 + c2y3 against lateral deflectiony for various values of
the constantc2.

4. Non-periodic Rayleigh–Ritz analysis

Irrespective of the size ofc2 in (5), the quadratic component dominates the nonlinear response
in the vicinity ofPC so we would expect the same form of passive modes to appear as when
F is simply given byF = y − y2. Wadeeet al. [5] performed an extended analysis of the
equations for the quadratic nonlinearity problem and derived a system of equations using the
double-scale approach. In Appendix B we derive the equivalent results for our restabilization
problem which shows that the complete form of the solution emerging from the bifurcation
point is

y = εA
(1)
1 cos(ωx + φ0)+ ε2{A(2)0 + B(2)1 sin(ωx + φ0)

+A(2)2 cos 2(ωx+ φ0)} +O(ε3). (14)

HereA(1)1 is given by (13),A(2)0 = 1
2A

(1)2
1 , A

(2)
2 = 1

18A
(1)2
1 (see (A3) and (A4)) andB(2)1 is as

shown in Equation (B5) of Appendix B. This perturbation solution can only be expected to be
accurate for reasonably small values ofε. OnceP is appreciably less thanPC(= 2) then, as
we discussed earlier, one of the few methods by which analytical progress is possible is via a
Rayleigh–Ritz approach.

Of course, of utmost importance for the successful implementation of a Rayleigh–Ritz
procedure is a good choice for the initial trial function. The usual obstacle that one has to face
is of dual but conflicting issues: on the other hand, if too simple a function is taken, then it is
unlikely to be able to capture the details of the physics involved, but if it is too complicated,
the resulting analysis may become very time-consuming if not totally impractical. To steer a
path between these problems and guided by the results above, deflections were sought with
the approximate form

y = A1 sechαx cosωx + A0 sech2αx + A2 sech2 αx cos 2ωx

+B1 sechαx tanhαx sinωx + C1 sech3αx cosωx

+D1 sech3 αx tanhαx sinωx. (15)

The first three terms arise from the obvious generalization of theO(ε2) solution (14) with
the phaseφ0 = 0 so as to incorporate the formal exponential asymptotics result obtained by
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[12] andX/2 in (14) is to be identified withαx. The remaining parts of (15) are motivated by
the higher-order active solutions outlined in Appendix B, see (B4), (B5) and the subsequent
comments concerning the forms of solutionsA(3)1 andB(4)1 . Last, it is important to emphasize
that the unknown coefficientsA1, A0, etc. in (15) should not be confused with the known
functions in (14).

In the usual Rayleigh–Ritz procedure the coefficients within (15) are treated as generalized
coordinates and the whole expression fed into theV function (3). The result is a complicated
and lengthy expression which contains numerous integrals, an example of which is

Icnm =
∫ ∞
−∞

sechnαx cosmωx dx. (16)

We can program closed-form expressions for such integrals as Mathematica routines [15],
using appropriate complex integrals around suitable contours and implementing Cauchy’s
residue theorem. The equilibrium is given by the solution to

∂V

∂A0
= 0,

∂V

∂A1
= 0, etc. (17)

and is located by exporting exact expressions for the various partial derivatives into user-
writtenC routines. The forms of (17) are far too involved to solve by direct means so use was
made of Newton’s algorithm [16, pp. 362–371].

An innovation introduced by Wadeeet al. [5] was to treat the quantitiesα andω (the shape
factors in (15)) as generalized coordinates rather than being taken as prescribed according to
(6). On the face of it, this action seems somewhat perverse, asy is not linear in these variables.
Whereas for the quadratic nonlinearity there were some arguably minor improvements in the
accuracy of solutions when this extra flexibility was introduced, this additional feature is vital
for our current work. Now it is essential that the shape factors arenot explicitly functions of
load (as would be the case if we imposed (6) for instance). The restabilization component in
our model means that solutions are very likely be multi-valued inP as they are tracked into
the restabilized region and conventional Rayleigh–Ritz procedures would soon fail.

To check the validity of the Rayleigh–Ritz solutions we used the boundary-value solver
AUTO97 [17] which incorporates special routines to continue homoclinic orbits. From a value
of P near critical it is possible to follow the primary solution all the way to a point where
the solution encounters a limit point. At this point the continuation inP clearly fails but is
possible to extend the solutions by exchanging the continuation parameter. If the continuation
is performed not onP , but rather on one of the generalized coordinates, it is possible to obtain
further solutions in the vicinity of the limit point. Attention can then be swapped back toP

and simple continuation in that parameter used again. Thus, with a little skulduggery we are
able to track around folds with our modal approach. AUTO, on the other hand, is able to deal
with folds and detect bifurcations quite satisfactorily.

A graph of the variation of amplitudey(0) of the primary localized solution versus load
is shown in Figure 4 for the three values ofc2 in Figure 3. We have followed the Rayleigh–
Ritz solution from near critical around the first local minimum of load and up to and beyond
the next local maximum and over this range the numerical and our approximate solutions
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Figure 4. Variation of load against central ampli-
tude of primary localization. Rayleigh–Ritz results
are shown by solid lines and the AUTO results by
dotted lines.

Figure 5. Variation of load against end-shorteningE .
Rayleigh–Ritz results are shown by solid lines and the
AUTO results by dotted lines.

are virtually indistinguishable. It is only after this stage that the approximate and numerical
solutions begin to diverge. The numerical results show that the dependence of the loading on
the central amplitudey(0) begins to oscillate wildly and it is unsurprising that the Rayleigh–
Ritz procedure is unable to follow this given our fairly simple form of trial function (15).

Figure 5 shows the variation of load against end shorteningε: a quantity that is easily
calculated by extracting the appropriate expression from (3) [2]

E = 1

2

∫ ∞
−∞

ẏ2 dx. (18)

In the Rayleigh–Ritz approach we used contour integration to findE after substituting (15)
in (18), while for the AUTO calculations we could findE directly by introducing a dummy
integral constraint.

The area under each curve in Figure 5 represents the work done in getting from the un-
loaded flat state to the particular point on the graph. Thus, this set of curves has physical
significance and it is once again noteworthy that the modal solution appears identical to the
numerical one up to the second limit point (first maximum) in the solution. Thereafter the two
techniques yield diverging solutions although for the larger values ofc2 this divergence is not
too severe. The other location where the numerical and Rayleigh–Ritz solutions show some
differences is a small region in the vicinity ofPC . This anomaly was also found in the case of a
softening quadratic foundation [5]. Unfortunately, we cannot offer any convincing explanation
for this behaviour so close toPC where we would expect a high degree of accuracy in both the
perturbation results and the Rayleigh–Ritz solutions. However, in passing we note that in this
limit α → 0 and so integrals of the typeIcnm (see (16)) withm = 0 become large compared
with those for whichm 6= 0. Recall that in (15) we motivated the various parts of the trial
function by ensuring that we have counterparts of the passive modes up toO(ε2) and of the
active modes up toO(ε4). WhenP is very close toPC(ε � 1), it is likely that we could
achieve better variational results (with the same number of variables) by exchanging some of
the higher order active parts of the solution for lower-order passive ones. However, as at such
small values ofε very good results can be obtained directly from the perturbative scheme, a
recasting of the variational formulation seems superfluous.

The accuracy of the modal results is evidenced by the precision of the match with the
AUTO solutions for almost all of the post buckling region considered in Figures 4 and 5.
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The agreement of the central amplitudes and overall end shortenings both give us a degree
of confidence in the solutions, at least up to the first maxima. As further evidence as to the
comparisons, Figure 6 shows the form ofy(x) at the second limit points of Figure 5 and near
where the final breakdown of the Rayleigh–Ritz forms occur. Two of thec2 values are taken
and it is clear from Figures 6a and 6c that at the maximums of the end-shortening graphs
the numerical and approximate solution functions are virtually identical. Notice that, as the
breakdown points are approached, subsidiary humps in the solutions grow markedly compared
with the central maximum (cf.Figure 6a with 6b and 6c with 6d). The agreements between
the two solution techniques, while no longer indistinguishable, is still eminently satisfactory,
although it is noted that the main discrepancy begins to show in the details of the secondary
humps – the central portions of the solutions are still captured remarkably well. Moreover,
as the solutions begin to show signs of becoming increasingly distributed in nature, it is
not surprising that our Rayleigh–Ritz forms, which recall were motivated by the two-scale
perturbation results for localized solutions, find it more-and-more difficult to reproduce the
numerical findings.

5. Conclusions

A successful application of a non-periodic Rayleigh–Ritz procedure has been reported which
is capable of finding accurate solutions an appreciable way into the post-buckling regime of a
strut resting on an elastic foundation. The recent paper by Woods and Champneys [9] indicates
that the solution accumulates more waves around the centre of localization and eventually
become periodic with the formation of a heteroclinic orbit connecting the flat state with one
with constant amplitude at a point where the spatial analogue of overall energy is equivalent.

Figure 6. Localized deflection profiles for (5) withc2 = 0·24 (for (a) and (b)) andc2 = 0·40 ((c) and (d)).
Graphs (a) and (c) are plotted at the location of the maximum of the respective load-end-shortening curve shown
in Figure 5 and the numerical and Rayleigh–Ritz solutions are shown together but are indistinguishable. Plots (b)
and (d) are shown near the point at which the Rayleigh–Ritz solutions break down (P = 1·20 andP = 1·74
respectively). The Rayleigh–Ritz solutions are plotted using the thick line and AUTO solutions by thin lines.

The double-scale equations give no inkling of the effect of a restabilizing term in the
foundation response but merely predicts the monotonic growth of a sinusoidal solution with
a slowly-varying amplitude. However, using this very form of solution as a basis for a non-
periodic Rayleigh–Ritz procedure, we have been able to track the sub-critical behaviour of the
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system extremely closely to that obtained by an independent numerical method at least up to
the point where the structure once again loses stability. As expected a loss in the accuracy of
the solution occurs soon after this stage because, as the solution becomes more disparate with
an increasing number of humps being formed either side of the centre of solution, the choice
of the modal form (15) fory seems then to be inappropriate. In the limit of full periodicity, our
solution may once again become accurate withα = 0. However, in that case it would seem
much more sensible to perform a truly periodic analysis in preference to the approach adopted
here.

We would contend that our non-periodic Rayleigh–Ritz procedure has shown itself to be a
useful engineering tool for investigating the properties of a structural system with complicated
stabilization characterisitics. Perturbation analysis can be used effectively for loadingsP close
to PC and harmonic Rayleigh–Ritz methods are appropriate in the limit of periodicity. Our
method outlined here attempts to a form a bridge between these extremes. With such a simple
trial function as we have here, it is unreasonable to expect our approximations to be good
for the whole domain between localized and periodic forms but it is pleasing just how far
into the post-buckling regime our results remain accurate. Nothing we have done entitles us
to expect such good results, but we have demonstrated that it is possible to track up to and
beyond the second limit point without noticeable error. This raises the exciting possibility
that a non-periodic Rayleigh–Ritz procedure is a good modal technique for investigating
homoclinic and perhaps other types of behaviour. We include here the study of perturbed
systems which can admit soliton-like solutions: obviously there is a wide class of problems of
this type within structural mechanics involving more complicated geometries like elastica and
shells. In addition, there is the possibility of extending our ideas into other aspects of solid
and fluid mechanics where ‘near-soliton’-like behaviour can be observed. Clearly this aspect
requires further studies and it would be surprising if progress can not be made. Given the
impressive accuracy we have already achieved, a more refined selection of the trial function
(15) could be expected to bear fruit.

To conclude, here we have been particularly interested in the initiation of the process of
restabilization and how the solution which emerges at the bifurcation point evolves. To the
best of our knowledge this is the first example of a non-periodic Rayleigh–Ritz procedure
used in an engineering application where sensitive tracking around folds has been required.
For the reasons outlined earlier, it is imperative that this modified form of Rayleigh–Ritz is
implemented for a standard harmonic type of analysis would be quite unable to cope with
the swaps in the nature of the stabilization of the strut. It is gratifying how the Rayleigh–
Ritz method has given a very accurate description of the beginnings of the restabilization
and it holds the promise of being extended usefully to other more complicated problems.
We hope to be able to proceed further with the current technique, but we also foresee the
need to incorporate a more sophisticated analysis which predicts the accumulation of many
large-amplitude ‘humps’ around the primary orbit in the limit of periodicity.
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Appendix A: Derivation of the double-scale equations

The analysis which leads to Equation (11) is an adaptation of that given by Wadeeet al. [5].
We present the important elements here although the interested reader is directed to [5] for a
full exposition of the methods involved.

We take the governing differential equation (5) and, noting the relationship betweenX and
x in (8), substituteP = PC − ε2 = 2− ε2 to give

ε4yXXXX + 4ε3yXXXx + 6ε2yXXxx + 4εyXxxx + yxxxx
+(2− ε2)(ε2yXX + 2εyXx + yxx)+ y − y2 + c2y

3 = 0, (A1)

where a subscripted letter denotes partial differentiation with respect to that variable. From
(6) we see that the wavenumber,ω, can also be expressed as a power series inε

ω = 1− ε
2

8
+ · · · . (A2)

After inserting the forms of solution (9), together with the series expansions (10) forAi(X)

andBi(X), we obtain transcendental equations for the unknowns. Of course, the nonlinearity
present ensures that interaction occurs between modes.

For a uniformly valid solution we require that the expressions are satisfied at progressively
higher powers ofε. If we assume that the modes associated with the critical loadPC = 2
areA1 andB1 then all other modes can be shown to be at least locally quadratic in these
active modes [5] (this is known as elimination of passive coordinates or Lyapunov–Schmidt
reduction [2]). The lowest order at which expressions arise isO(ε2) and at this stage equations
for modesA(2)0 , A

(2)
2 andB(2)2 are obtained. For example,A(2)0 is defined in terms ofA(1)1 and

B
(1)
1 by

A
(2)
0 = 1

2(A
(1)2
1 + B(1)21 ), (A3)

while the other two equations at this order yield

A
(2)
2 = 1

18(A
(1)2
1 − B(1)21 ) (A4)

and

B
(2)
2 = 1

9A
(1)
1 B

(1)
1 . (A5)

At the next order,O(ε3), we get the first appearance of equations which give non-trivial
information about the active modes at orderε (i.e.A(1)1 andB(1)1 ):

4
d2A

(1)
1

dX2
− A(1)1 + 2A(2)0 A

(1)
1 + A(1)1 A

(2)
2 + B(1)1 B

(2)
2

−3
4c2A

(1)
1

(
A
(1)2
1 + B(1)21

)
= 0, (A6)

4
d2B

(1)
1

dX2
− B(1)1 + 2A(2)0 B

(1)
1 − A(2)2 B

(1)
1 + A(1)1 B

(2)
2

−3
4c2B

(1)
1

(
A
(1)2
1 + B(1)21

)
= 0. (A7)
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Symmetry arguments lead to the conclusion that we can safely putB
(1)
1 = 0 without loss

of generality. Substituting expressions (A3)–(A5) in (A6) leads directly to Equation (11) and
hence solution (13).

Appendix B: Remarks concerning higher order terms

Given the perturbative strategy outlined above, it is (theoretically) straightforward to pursue
the calculations to as many orders as we please. To illustrate how this develops, here we
mention the results of theO(ε4) problem. Of course, the passive components of the calculation
lead toO(ε4) terms in (9), but it is at this point we uncover the details of theO(ε2) active parts.
Indeed, the comparison of sin(ωx + φ0) and cos(ωx + φ0) terms in (A1) show that

L(A(2)1 ) = 0 (B1)

and

L(B(2)1 ) = 8
27A

(1)2
1

dA(1)1

dX
+ dA(1)1

dX
− 4

d3A
(1)
1

dX3
, (B2)

where we have denoted

L(·) := 4
d2(·)
dX2
+
[(

19

18
− 3

2
c2

)
A
(1)2
1 − 1

]
(·). (B3)

The bounded solutions of this pair of equations are

A
(2)
1 = 0 (B4)

and

B
(2)
1 = 1

4(19− 27
2 c2)

−3/2[374− 243c2] sech

(
X

2

)
tanh

(
X

2

)
. (B5)

The calculation of higher order active modes reveals an interesting structure. For instance

L(A(3)1 ) = RHS, L(B(3)1 ) = 0, (B6)

so thatB(3)1 = 0 and the form of RHS is such thatA(3)1 comprises two parts: one proportional
to sech3(X/2) and the other proportional to sech(X/2). In other words,A(3)1 is a multiple of
A
(1)
1 plus a multiple ofA(1)1 sech2(X/2). This pattern continues to yet further orders, soB(4)1

is partly proportional toB(2)1 , see (B5), together with a multiple of sech3(X/2) tanh(X/2).
The details of the multiplying constants are immaterial for the Rayleigh–Ritz method but
it is of interest that the solutions for the active modes are all combinations of terms like
sechm(X/2) tanhn(X/2) wherem > 1 andn > 0 and these functions decay exponentially
as|X| → ∞.
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